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Abstract

A formalism suitable for numerical evaluation of finite-range liquid-drop model expressions related to
the interaction energy of two arbitrarily oriented, deformed heavy ions is developed. The presentation of
the formalism is organized to facilitate extensions to alternative parameterizations and energy expressions.
The model is applied to specific heavy-ion collisions that illustrate the importance of a multidimensional
approach in the study of complete fusion reactions. Potential-energy surfaces related to light-particle
emission for heavy, deformed nuclei are also presented.

1 Introduction

Since more than 20 years it has been clear that to account reasonably accurately for the
macroscopic interaction energy between two colliding heavy ions it is necessary to include effects
related to the finite range of the nuclear force 1). Thus, the potential energy between two colliding
heavy ions is usually given as a sum of a Coulomb-energy term and a finite-range surface-energy
term 1−6). The finite-range energy term is a generalization of the proximity potential 7).

A necessary condition for forming a compound nucleus in a heavy-ion collision is that the
fusing system dynamically evolves to a configuration inside the fission saddle point in a multi-
dimensional deformation space 8). To establish the trajectory of the fusing system the solution
of the equations of motion 9−11) and a knowledge of the potential energy and the inertia and
viscosity tensors as functions of nuclear shape and position are required. These quantities and
the relative positions of the fission saddle point and the initial point of touching, determine the
optimum energy for fusion in a heavy-ion reaction. For heavy systems an extra push over and
above the energy of the Coulomb barrier is required to bring the trajectory inside the saddle
point and achieve fusion. In the search for the heaviest elements it has been of extreme im-
portance to establish both the optimum target-projectile combination and the most favorable
energy for compound nucleus formation.
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Although the solution of the equations of motion is required to calculate cross sections for
compound-nucleus formation, potential-energy surfaces are highly useful as a starting point
for understanding the general behavior of these equations. Since the equations of motion are
normally solved only for very simple initial configurations, for example colliding spherical heavy
ions, potential-energy surfaces are at present an important tool for quickly analyzing more
complex initial conditions. Since one or both of the colliding ions are deformed in many heavy-
ion reaction of current interest, we present here calculated potential-energy surfaces for general
orientations of colliding, deformed heavy ions.

To allow a systematic evaluation of the potential energy for arbitrarily oriented, deformed
heavy ions we develop the integrals that occur in macroscopic expressions for the nuclear and
Coulomb interaction energies to a set of expressions that are suitable for numerical evaluation.
The presentation of the formalism is organized to facilitate extensions to alternative shape
parameterizations and energy expressions.

2 Integrals

Several integrals occur in the finite-range liquid-drop model (FRLDM) and in the finite-
range droplet model (FRDM) 1,4,5,9,12−15). For our studies of the potential energy in heavy-ion
collisions it is sufficient to consider the Coulomb energy and nuclear interaction-energy terms of
the 1981 FRLDM 5,12). Thus, we obtain for the finite-range surface energy, or as it is also called
nuclear energy

En = − cs
8π2r02a3

∫ ∫ (
σ

a
− 2

)
e−σ/a

σ
d3r d3r′ (1)

and for the direct sharp-surface Coulomb energy

EC =
1

2

∫ ∫
1

σ
ρ(~r)ρ(~r ′) d3r d3r′ (2)

where
~σ = ~r − ~r ′ (3)

and where the charge density at point ~r is given by ρ(~r ). The above expressions are appropriate
for the self-energy of a single nucleus. When applied to the calculation of the interaction energy
between two heavy ions the expressions should be multiplied by a factor of 2.

We here develop the expressions for the nuclear and sharp-surface Coulomb interaction ener-
gies given in eqs. 1 and 2 to a form suitable for numerical evaluation. The six-dimensional volume
integrals that define these energy terms may be reduced to four-dimensional surface integrals
by a two-fold application of Gauss theorem 1,4,9). One obtains for the nuclear energy 4,9)

En = − cs
8π2r01r02

∮ ∮ {
2 −

[(
σ

a

)2

+ 2

(
σ

a

)
+ 2

]
e−σ/a

} (
~σ · d~S

) (
~σ · d~S ′

)

σ4
(4)

The sharp-surface Coulomb energy is given by 9)

EC = − ρ01ρ02
12

∮ ∮
(
~σ · d~S

) (
~σ · d~S ′

)

σ
(5)

The above formulas should be interpreted slightly differently depending on whether they
are applied to the calculation of self energies or interaction energies. Here we will focus on
calculating the interaction energy between two heavy ions. Then the above expressions should
be multiplied by a factor of 2.
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3 Model constants

For the values of the model constants we here choose the determination made by ref. 5,12).
Thus

cs = [cs(1)cs(2)]1/2

ρ01 =
3

4π

Z1e

(r01A1
1/3)3

ρ02 =
3

4π

Z2e

(r02A2
1/3)3

cs(1) = as(1 − κsI1
2)

I1 =
N1 − Z1

N1 + Z1

cs(2) = as(1 − κsI2
2)

I2 =
N2 − Z2

N2 + Z2

(6)

where we have assumed constant charge densities ρ01 and ρ02 in the two ions. In the FRLDM
that we use here we choose parameters according to ref. 12). Thus

as = 21.13 MeV

κs = 2.30

e2 = 1.439 976 4 MeV fm

a = 0.68 fm

r01 = r02 = r0 = 1.16 fm (7)

Finally, we note that we have used the Coulomb energy expression for a sharp-surface shape,
instead of the expression for a diffuse-surface shape used in ref. 12). This represents a slight
approximation, but it should be quite sufficient for calculating the interaction energy between
heavy ions.

For the case the above expressions are applied to obtain the self-energies of a single body,
obvious modifications of some of the above quantities should be implemented.

4 Mathematical detail

Before the integrals for the various macroscopic functions can be evaluated they must be
brought on a form suitable for numerical integration on a computer. This means that the scalar
function to be integrated has to be specified in all its detail. In our case this scalar function
will serve as the starting point for constructing a FORTRAN computer subroutine to perform
the quadrature of the scalar function. The “only” task that has to be accomplished so that this
subroutine can trivially be written is to provide expressions for σ, ~σ · d~S, and ~σ · d~S ′. This is
complicated because the vectors occurring in integrals to be evaluated are most easily defined in
the body-fixed coordinate systems of shape 1 and 2. To perform the vector operations occurring
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in the various integral expressions to be evaluated, we have to express the vector components in
a common coordinate system. For definiteness we will express all components in the body-fixed
system of shape 1.

We develop the formalism here with the goal that it should facilitate the writing of the com-
puter algorithms required for the numerical evaluation of the integrals. In addition it should
be easy to extend the results to more general and to different parameterizations. We therefore
proceed in the following steps. In this section we present results that are independent of parame-
terizations and the curvelinear coordinates eventually chosen as integration variables. These are
discussed in subsequent sections. There we discuss the transformations from coordinate system
2 to system 1, and give expressions for σ, ~σ · d~S, and ~σ · d~S ′. These expressions will contain
functions that depend on the parameterization and curvelinear coordinate system chosen. The
specific functions will then be given in explicit form in the appropriate sections.

To show when the components of a vector is given in system 2 we use the notation {, , } as
contrasted to (, , ) for components in system 1. If ~r is the vector from the origin of system 1 to
the surface of shape 1, expressed in system 1, and ~r ′ a vector from the origin of system 2 to the
surface of shape 2, expressed in system 2, then

~r = (rx, ry, rz)

~r ′ = {r′x, r′y, r′z} (8)

Our notation here is introduced with the aim to reduce the possibility of confusion in the
subsequent coding of the formalism into computer algorithms. Since we have at this point
written such a computer algorithm, we know from practical experience that this approach is
extremely useful.

4.1 Coordinate transformations

To specify the location of the coordinate system fixed in shape 2 relative to the system
fixed in shape 1, we specify the position and orientation of the second body-fixed system in the
following steps. The first element is a translation ~RO2 giving the location of the origin of the
second system in coordinate system 1. Thus,

~RO2 = (RO2x, RO2y, RO2z) (9)

We now have a coordinate system, translated with respect to system 1 and with coordinate
axes parallel to the original system 1. We designate this system xa, ya, za. Next, a rotation is
performed of the second coordinate system around its origin. This rotation is specified in terms
of the Eulerian angles of rotation. There are many definitions of Eulerian angles. Here we follow
the conventions normally used in quantum mechanics, and build up the complete transformation
in terms of three successive transformations around the coordinate axes of the translated system.
First, the coordinate system is rotated counterclockwise an angle α about the za axis, which
rotation is then described by

Rza(α) =




cosα sinα 0

− sinα cosα 0

0 0 1


 (10)
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yielding the new system xb, yb, zb. Next, the system is rotated an angle β counterclockwise
about the yb axis, which rotation is described by

Ryb(β) =




cos β 0 − sin β

0 1 0

sinβ 0 cos β


 (11)

yielding the new system xc, yc, zc. Finally, the system is rotated an angle γ counterclockwise
about the zc axis, which rotation is described by

Rzc(γ) =




cos γ sin γ 0

− sin γ cos γ 0

0 0 1


 (12)

yielding the new system x′, y′, z′. The combined effect of all three rotations is then described
by the triple product

A = Rzc(γ)Ryb(β)Rza(α) (13)

The complete transformation is therefore given by

A =




cos γ cos β cosα− sin γ sinα cos γ cos β sinα + sin γ cosα − cos γ sin β

− sin γ cos β cosα− cos γ sinα − sin γ cos β sinα + cos γ cosα sin γ sin β

sinβ cosα sinβ sinα cos β


 (14)

The above transformation gives the transformation from system 2 with coordinate axes parallel
to the coordinate axes of system 1. However, we are interested in the inverse transformation. It
is well-known that the inverse of matrices affecting orthogonal transformations is equal to the
transpose of the original matrix, that is

A−1 = Ã (15)

With T = A−1 we therefore have for the inverse transformation

T =




cos γ cos β cosα− sin γ sinα − sin γ cos β cosα− cos γ sinα sin β cosα

cos γ cos β sinα + sin γ cosα − sin γ cos β sinα + cos γ cosα sin β sinα

− cos γ sin β sin γ sinβ cos β


 (16)

Therefore the transformation from the body-fixed system of shape 2 to the body-fixed system
of shape 1 is given by




r′x
r′y
r′z


 =




T11 T12 T13

T21 T22 T23

T31 T32 T33








r′x
r′y
r′z





+




RO2x

RO2y

RO2z


 (17)

The transformation given in eq. 17 should only be applied to transform point coordinates
given in the coordinate system 2 to coordinate values in system 1 for the same point. The
components of the vector ~r ′ are specified in terms of a set of such a point coordinates and
should therefore be transformed as expressed in eq. 17. However, the components of the surface
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area element and the related vector ~C as defined in eqs. 19 and 20 do not represent such a point.
The reason is that it does not represent a “point” at all. Instead it is a vector whose magnitude
does not depend on the coordinate system used. However, when calculated in the body-fixed
system of shape 2, by applying eq. 19 to ~r ′ its components are given in the rotated system 2.
Therefore, the rotational part of the transformation given in eq. 17 must be applied to obtain
the correct components in system 1, in which the vector operations are carried out. Thus, for
the vector ~C ′ the following transformation should be applied:




C ′

x

C ′

y

C ′

z


 =




T11 T12 T13

T21 T22 T23

T31 T32 T33








C ′

x

C ′

y

C ′

z





(18)

4.2 Surface element

The vector surface area element d~S is given by

d~S =
∂~r

∂q1
× ∂~r

∂q2
dq1 dq2 (19)

With this order between the partial derivatives the vector d~S is correctly pointing in the direction
away from the volume enclosed by the surface. The variables q1 and q2 represent integration
variables of some orthogonal, curvelinear system. Specific examples will be discussed below. To
develop expressions that are suitable as a starting point for later programming we write

d~S = ~C dq1 dq2 (20)

Obviously




Cx

Cy

Cz


 =




∂ry
∂q1

∂rz
∂q2

− ∂ry
∂q2

∂rz
∂q1

∂rz
∂q1

∂rx
∂q2

− ∂rz
∂q2

∂rx
∂q1

∂rx
∂q1

∂ry
∂q2

− ∂rx
∂q2

∂ry
∂q1




(21)

4.3 Scalar products

We are now in a position to write down the expressions for the products ~σ · d~S and ~σ · d~S ′.
It is more convenient to work with expressions that have the infinitesimals dq1 and dq2 factored
out. Thus we will work with ~σ · ~C and ~σ · ~C ′ instead. Two rather distinct cases occur. In one
case the two surface integrations are carried out over the same shape, as for instance when a
sequence of shapes leading from ground state through the fission barrier are studied. In the
other case, two different bodies are involved, as for instance in a heavy-ion collision. To evaluate
the total potential energy for such a configuration one interaction integral and two self-energy
integrals would be involved. However, the self-energy integrals would not change during the time
the two shapes were separated. We therefore here only have to deal with the more complicated
interaction integral between two shapes of arbitrary orientation.

We here assume that we are dealing with two distinct shapes. Here the primed vector
components will always indicate components in the body-fixed system of the second shape.
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Thus, we obtain for the product involving the surface element of the first shape, by use of the
transpose of eq. 17

~σ · ~C =
((

rx ry rz
)
−
[{

r′x r′y r′z

}
T̃ +

(
RO2x RO2y RO2z

)])



Cx

Cy

Cz


 (22)

An evaluation of eq. 22 yields

~σ · ~C = (rx − r′xT11 − r′yT12 − r′zT13 −RO2x)Cx

+ (ry − r′xT21 − r′yT22 − r′zT23 −RO2y)Cy

+ (rz − r′xT31 − r′yT32 − r′zT33 −RO2z)Cz (23)

For the integration over the primed variable, which in this case involves the surface area of shape
2 we find the following expression for the product involving the surface area of the second shape

~σ · ~C ′ =
((

rx ry rz
)
−
[{

r′x r′y r′z

}
T̃ +

(
RO2x RO2y RO2z

)])

T





C ′

x

C ′

y

C ′

z






 (24)

Note that we here only performed a pure rotational transformation of the surface element vector
components as discussed in connection with eq. 18. Evaluation of eq. 24 yields

~σ · ~C ′ = (rx − r′xT11 − r′yT12 − r′zT13 −RO2x)(C ′

xT11 + C ′

yT12 + C ′

zT13)

+ (ry − r′xT21 − r′yT22 − r′zT23 −RO2y)(C ′

xT21 + C ′

yT22 + C ′

zT23)

+ (rz − r′xT31 − r′yT32 − r′zT33 −RO2z)(C
′

xT31 + C ′

yT32 + C ′

zT33) (25)

5 Curvelinear coordinates

The choice of coordinate system for evaluating the integrals occurring in the macroscopic
energy expression is normally based on the parameterization used to generate the nuclear shapes.
For the perturbed-spheroid ǫ parameterization used in the Nilsson 16,17) and folded-Yukawa
single-particle models 18), this choice is spherical polar coordinates, for the three-quadratic-
surface parameterization used in studies with the folded-Yukawa single-particle potential 19)
the choice is cylindrical coordinates. In our first study here, we consider only the perturbed-
spheroid ǫ parameterization, since it best describes the nuclear ground-state 18), which is the
relevant shape to consider in heavy-ion collisions.

5.1 Spherical polar coordinates

The spherical polar coordinates are defined by

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ (26)
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It is common to parametrize the nuclear surface by giving r as a function of θ and φ. With the
most general assumption in which ~r and ~r ′ may refer to different surfaces labeled by “1” and
“2” we obtain

~r = (R1(θ, φ) sin θ cosφ,R1(θ, φ) sin θ sinφ,R1(θ, φ) cos θ) (27)

~r ′ = {R2(θ′, φ′) sin θ′ cosφ′, R2(θ′, φ′) sin θ′ sinφ′, R2(θ′, φ′) cos θ′} (28)

Here we have for definiteness assumed that the primed coordinates refer to a shape “2” that is
different from shape “1”. We have also given the components of the vector ~r ′ to the surface
of the second shape in the body-fixed primed coordinate system of the second shape. That the
vector components are given in this system is indicated by the notation { }. We have previously
given the transformations of the primed components to the unprimed system and expressions
for ~σ = ~r − ~r ′ and ~σ · d~S ′.

∂~r

∂θ
=

(
∂R1(θ, φ)

∂θ
sin θ cosφ + R1(θ, φ) cos θ cosφ,

∂R1(θ, φ)

∂θ
sin θ sinφ + R1(θ, φ) cos θ sinφ,

∂R1(θ, φ)

∂θ
cos θ −R1(θ, φ) sin θ

)

∂~r

∂φ
=

(
∂R1(θ, φ)

∂φ
sin θ cosφ−R1(θ, φ) sin θ sinφ,

∂R1(θ, φ)

∂φ
sin θ sinφ + R1(θ, φ) sin θ cosφ,

∂R1(θ, φ)

∂φ
cos θ

)
(29)

6 Parameterizations

We now present explicit expressions for derivatives and other functions required for numerical
evaluation of the double surface integrals. Each parameterization and coordinate system leads
to a specific set of equations. As mentioned earlier we develop as a first application only the
perturbed-spheroid ǫ parameterization in spherical polar coordinates.

6.1 ǫ parameterization in spherical polar coordinates

The ǫ parameterization was used originally 16) in the Nilsson modified oscillator model. It
was introduced to simplify the calculation of matrix elements between nuclear single-particle
wave functions. Here we employ its extension to higher multipole distortions and to axially

asymmetric shapes 20−22). Note that there is a factor
√

4π
9

1
2

missing in front of the V4(γ)

function in eq. 3 of ref. 22). As a first step a “stretched” representation is introduced. The
stretched coordinates ξ, η and ζ are defined by

ξ =

{
mω0

h̄

[
1 − 2

3
ǫ2 cos

(
γ +

2

3
π

)]}1/2

x

η =

{
mω0

h̄

[
1 − 2

3
ǫ2 cos

(
γ − 2

3
π

)]}1/2

y

ζ =

{
mω0

h̄

[
1 − 2

3
ǫ2 cos γ

]}1/2

z (30)
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where h̄ω0 is the normally Z and N -dependent oscillator energy, ǫ2 the ellipsoidal deformation
parameter, and γ the non-axiality angle. It is then convenient to define a “stretched” radius
vector ρt by

ρt = (ξ2 + η2 + ζ2)1/2 (31)

a stretched polar angle θt by

u = cos θt =
ζ

ρt
=




1 − 2

3
ǫ2 cos γ

1 − 1

3
ǫ2 cos γ(3 cos2 θ − 1) +

(
1

3

)1/2

ǫ2 sin γ sin2 θ cos 2φ




1/2

cos θ (32)

and a stretched azimuthal angle φt by

v = cos 2φt =
2η

(ξ2 + η2)1/2
=

[
1 +

1

3
ǫ2 cos γ

]
cos 2φ +

(
1

3

)1/2

ǫ2 sin γ

1 +
1

3
ǫ2 cos γ +

(
1

3

)1/2

ǫ2 sin γ cos 2φ

(33)

The Nilsson modified-oscillator potential is now defined by

V =
1

2
h̄ω0ρt

2

{
1 + 2ǫ1P1(cos θt)

− 2

3
ǫ2 cos γP2(cos θt) +

1

3
ǫ2 sin γ

(
8

5
π

)1/2

[Y22(θt, φt) + Y2−2(θt, φt)]

+ 2ǫ3P3(cos θt) + 2ǫ4V4(cos θt, cos 2φt) + 2ǫ5P5(cos θt) + 2ǫ6P6(cos θt)

}

− κh̄
◦

ω0

[
2~lt · ~s + µ(~l 2

t − <~l 2
t >)

]
(34)

where

V4(u, v) = a40P4 +

√
4π

9

[
a42(Y 2

4 + Y −2
4 ) + a44(Y 4

4 + Y −4
4 )

]
(35)

Here the hexadecapole potential V4(u, v) is made dependent on γ in such a way that axial
symmetry is maintained when γ = 0, 60◦, −120◦, and −60◦. This is accomplished by choosing
the coefficients a4i so that they have the transformation properties of a hexadecapole tensor.
Thus 22)

a40 =
1

6
(5 cos2 γ + 1)

a42 = − 1

12

√
30 sin 2γ

a44 =
1

12

√
70 sin2 γ (36)

The usual assumption is now to assume that the shape of the nuclear surface is equal to
the shape of an equipotential surface given by eq. (34). By neglecting the ~lt · ~s and ~l 2

t terms
and solving for ρt and then using eqs. (30–33) to derive an expression for r in the non-stretched
laboratory system the following expression is obtained
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r(θ, φ) =
R0

ω0/
◦

ω0

{[
1 − 2

3
ǫ2 cos

(
γ +

2

3
π

)] [
1 − 2

3
ǫ2 cos

(
γ − 2

3
π

)] [
1 − 2

3
ǫ2 cos γ

]}
−1/2

×
[
1 − 1

3
ǫ2 cos γ − 2

9
ǫ2

2 cos2 γ + ǫ2

(
cos γ +

1

3
ǫ2 cos 2γ

)
u2

−
(

1

3

)1/2

ǫ2 sin γ

(
1 − 2

3
ǫ2 cos γ

)
(1 − u2)v

]1/2

×
[
1 − 2

3
ǫ2 cos γ

1

2
(3u2 − 1) +

(
1

3

)1/2

ǫ2 sin γ(1 − u2)v

+ 2ǫ1P1(u) + 2ǫ3P3(u) + 2ǫ4V4(u, v) + 2ǫ5P5(u) + 2ǫ6P6(u)

]
−1/2

(37)

The quantity ω0/
◦

ω0 is determined by the volume conservation condition, which gives

(
ω0
◦

ω0

)3

=
1

4π

{[
1 − 2

3
ǫ2 cos

(
γ +

2

3
π

)] [
1 − 2

3
ǫ2 cos

(
γ − 2

3
π

)] [
1 − 2

3
ǫ2 cos γ

]}
−1/2

×
∫ π

0
dθt

∫ 2π

0
dφt sin θt

[
1 − 2

3
ǫ2 cos γP2(u) + ǫ2 sin γ

(
8π

45

)1/2

(Y22 + Y2−2)

+ 2ǫ1P1(u) + 2ǫ3P3(u) + 2ǫ4V4(u, v) + 2ǫ5P5(u) + 2ǫ6P6(u)

]
−3/2

(38)

The above equation is derived by determining the volume inside the nuclear surface given by
eq. 37 by evaluating the integral

∫
d3r inside the surface. This integration is carried out in terms

of the “non-stretched” coordinates θ and φ, naturally. It is after a variable substitution that
one arrives at the expression in eq. 38. The Legendre polynomials and spherical harmonics that
occur in the above expressions are given in the Appendix.

6.1.1 Partial derivatives

In spherical polar coordinates evaluation of expression 21 requires expressions for the partial
derivatives occurring in eq. 29, that is partial derivatives of r(θ, φ) given in eq. 37. We observe
that 




∂r

∂θ
=

∂r

∂ cos θ

∂ cos θ

∂θ
+

∂r

∂ cos 2φ

∂ cos 2φ

∂θ
∂r

∂φ
=

∂r

∂ cos θ

∂ cos θ

∂φ
+

∂r

∂ cos 2φ

∂ cos 2φ

∂φ

(39)

Equation 39 simplifies to 



∂r

∂θ
= − sin θ

∂r

∂ cos θ
∂r

∂φ
= − 2 sin 2φ

∂r

∂ cos 2φ

(40)
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which can be further developed to






∂r

∂θ
= − sin θ

[
∂r

∂ cos θt

∂ cos θt
∂ cos θ

+
∂r

∂ cos 2φt

∂ cos 2φt

∂ cos θ

]

∂r

∂φ
= − 2 sin 2φ

[
∂r

∂ cos θt

∂ cos θt
∂ cos 2φ

+
∂r

∂ cos 2φt

∂ cos 2φt

∂ cos 2φ

] (41)

which simplifies to





∂r

∂θ
= − sin θ

∂r

∂u

∂u

∂ cos θ

∂r

∂φ
= − 2 sin 2φ

[
∂r

∂u

∂u

∂ cos 2φ
+

∂r

∂v

∂v

∂ cos 2φ

] (42)

We further observe that r(θ, φ) may be written

r(θ, φ) = C

[
f(u, v)

g(u, v)

]1/2
(43)

with

C =
R0

ω0/
◦

ω0

{[
1 − 2

3
ǫ2 cos

(
γ +

2

3
π

)] [
1 − 2

3
ǫ2 cos

(
γ − 2

3
π

)] [
1 − 2

3
ǫ2 cos γ

]}
−1/2

f(u, v) =

[
1 − 1

3
ǫ2 cos γ − 2

9
ǫ2

2 cos2 γ + ǫ2

(
cos γ +

1

3
ǫ2 cos 2γ

)
u2

−
(

1

3

)1/2

ǫ2 sin γ

(
1 − 2

3
ǫ2 cos γ

)
(1 − u2)v

]

g(u, v) =

[
1 − 2

3
ǫ2 cos γ

1

2
(3u2 − 1) +

(
1

3

)1/2

ǫ2 sin γ(1 − u2)v

+ 2ǫ1P1(u) + 2ǫ3P3(u) + 2ǫ4V4(u, v) + 2ǫ5P5(u) + 2ǫ6P6(u)

]
(44)

Thus 



∂r(v, v)

∂u
= C

f ′

u(u, v)g(u, v) − f(u, v)g′u(u, v)

2f1/2g3/2

∂r(u, v)

∂v
= C

f ′

v(u, v)g(u, v) − f(u, v)g′v(u, v)

2f1/2g3/2

(45)

From eqs. 32, 33 and 44 we are now able to determine the required derivatives. The partial
derivatives of f(u, v) and g(u, v) are given by

f ′

u(u, v) =

[
2ǫ2

(
cos γ +

1

3
ǫ2 cos 2γ

)
u + 2

(
1

3

)1/2

ǫ2 sin γ

(
1 − 2

3
ǫ2 cos γ

)
uv

]



P. Möller and A. Iwamoto/Macroscopic potential-energy surfaces. . . 12

f ′

v(u, v) = −
[(

1

3

)1/2

ǫ2 sin γ

(
1 − 2

3
ǫ2 cos γ

)
(1 − u2)

]

g′u(u, v) =

[
− 2ǫ2 cos γu− 2

(
1

3

)1/2

ǫ2 sin γuv

+ 2ǫ1
dP1(u)

du
+ 2ǫ3

dP3(u)

du
+ 2ǫ4

dV4(u, v)

du
+ 2ǫ5

dP5(u)

du
+ 2ǫ6

dP6(u)

du

]

g′v(u, v) =

(
1

3

)1/2

ǫ2 sin γ(1 − u2) + 2ǫ4
∂V4(u, v)

∂v
(46)

The derivatives of the Legendre polynomials occurring above are given in the Appendix. The
partial derivatives of u(cos θ, cos 2φ) in eq. 32 are determined by observing that

u(cos θ, cos 2φ) = Cpol

[
1

h(cos θ, cos 2φ)

]1/2
cos θ

∂u(cos θ, cos 2φ)

∂ cos θ
=

Cpol

2

[
2h(cos θ, cos 2φ) − ∂h(cos θ, cos 2φ)

∂ cos θ
cos θ

] [
1

h(cos θ, cos 2φ)

]3/2

∂u(cos θ, cos 2φ)

∂ cos 2φ
= − Cpol

2

∂h(cos θ, cos 2φ)

∂ cos 2φ

[
1

h(cos θ, cos 2φ)

]3/2
cos θ (47)

where

Cpol =

[
1 − 2

3
ǫ2 cos γ

]1/2

h(cos θ, cos 2φ) =

[
1 − 1

3
ǫ2 cos γ(3 cos2 θ − 1) +

(
1

3

)1/2

ǫ2 sin γ(1 − cos2 θ) cos 2φ

]
(48)

We obtain

∂h(cos θ, cos 2φ)

∂ cos θ
= − 2ǫ2 cos γ cos θ −

(
1

3

)1/2

2ǫ2 sin γ cos θ cos 2φ

∂h(cos θ, cos 2φ)

∂ cos 2φ
=

(
1

3

)1/2

ǫ2 sin γ(1 − cos2 θ) (49)

and
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∂u(cos θ, cos 2φ)

∂ cos θ
=

[
1 − 2

3
ǫ2 cos γ

]1/2

×
[
1 +

1

3
ǫ2 cos γ +

(
1

3

)1/2

ǫ2 sin γ cos 2φ

]

×
[
1 − 1

3
ǫ2 cos γ(3 cos2 θ − 1) +

(
1

3

)1/2

ǫ2 sin γ sin2 θ cos 2φ

]
−3/2

∂u(cos θ, cos 2φ)

∂ cos 2φ
= − 1

2

[
1 − 2

3
ǫ2 cos γ

]1/2
cos θ

×
[(

1

3

)1/2

ǫ2 sin γ(1 − cos2 θ)

]
(50)

×
[
1 − 1

3
ǫ2 cos γ(3 cos2 θ − 1) +

(
1

3

)1/2

ǫ2 sin γ sin2 θ cos 2φ

]
−3/2

For the function v = cos 2φt in eq. 33 we only need to calculate the derivative with respect to
cos 2φ since this function does not depend on cos θ. To facilitate the derivation of the derivative
we write

v =
s

t
(51)

where

s =

[
1 +

1

3
ǫ2 cos γ

]
cos 2φ +

(
1

3

)1/2

ǫ2 sin γ

t = 1 +
1

3
ǫ2 cos γ +

(
1

3

)1/2

ǫ2 sin γ cos 2φ (52)

We need to calculate
∂v

∂ cos 2φ
=

s′t− st′

t2
(53)

We find that

∂s

∂ cos 2φ
= 1 +

1

3
ǫ2 cos γ

∂t

∂ cos 2φ
=

(
1

3

)1/2

ǫ2 sin γ (54)

This gives

∂s

∂ cos 2φ
t = 1 +

1

3
ǫ2 cos γ +

(
1

3

)1/2

ǫ2 sin γ cos 2γ

+
1

3
ǫ2 cos γ +

1

9
ǫ2

2 cos2 γ +

(
1

3

)3/2

ǫ2
2 cos γ sin γ cos 2φ
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s
∂t

∂ cos 2φ
=

(
1

3

)1/2

ǫ2 sin γ cos 2γ +

(
1

3

)3/2

ǫ2
2 sin γ cos γ cos 2φ +

1

3
ǫ2

2 sin2 γ (55)

Thus we find for the derivative

∂v

∂ cos 2φ
=

1 +
2

3
ǫ2 cos γ +

1

9
ǫ2

2 cos2 γ − 1

3
ǫ2

2 sin2 γ
[
1 +

1

3
ǫ2 cos γ +

(
1

3

)1/2

ǫ2 sin γ cos 2φ

]2 (56)

7 Implementation

When a model of a physical phenomenon is developed, the project commonly evolves in the
following steps:

1. An idea of a project emerges. The ideas are developed as a set of handwritten notes. A
computer code is written, based on the handwritten notes.

2. The model is explored by use of the computer code. Both model and code are debugged.

3. Based on the experience from the initial model formulation and its computer implemen-
tation a revised, final model and a revised, final computer code are developed. This latter
process is usually a multi-step process. In each step new sets of hand-written notes are
produced.

4. A manuscript, which defines the model and discusses the results obtained from the com-
puter implementation is prepared.

This, rather common development process makes it difficult to ascertain the correctness of
the computer model and of the model specification in the manuscript, for two reasons. First, the
incremental nature of the development process usually leads to non-optimal, non-transparent
code, because an existing code is modified to include the additions to the model. Second,
when the manuscript presenting the model is prepared as a final step, errors may occur in the
manuscript, even after careful proof-reading, precisely because the manuscript is the final step.
The manuscript itself is therefore not subject to particularly challenging tests of correctness.

To avoid these difficulties we have proceeded in a different manner. We first wrote the model
specification sections of this manuscript and then wrote the corresponding computer code. The
specific steps involved were the following.

The model specification presented in this paper was written in LATEX on a 386SL laptop
computer. A FORTRAN computer code was then developed on the same laptop, after the com-
plete model specification was available as a LATEX manuscript, which served as the specification
of the code.

The code was tested in several ways. If a discovered error was caused by a misprint in the
manuscript, the misprint was corrected and the new manuscript version served as the specifica-
tion for the code, which excluding write and format statements is about 1100 lines long.

The computer code was first tested by evaluating the derivatives occurring in the model
specifications both by use of the analytical expressions derived in this paper and by numerical
differentiation. In double precision we were able to assure the agreement between these two
derivatives to more than 10 digits. Second, we tested the code by evaluating the potential
energy for several, equivalent spatial configurations of deformed nuclei. Third, one notes that
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with slight modifications one can use the current formalism to evaluate the Coulomb energy of
a single, charged, deformed nucleus. We compared the result of such an evaluation for axially
asymmetric shapes with results obtained by Ingemar Ragnarsson by use of a completely different
code and obtained agreement to desired accuracy, depending on the number of integration points
selected.

At present we are running the code on an HP-Apollo 9000-735 computer. The running time
depends on the number of integration point in the four-dimensional surface integrals. With the
specific choice of 24 steps in each of the four angles we obtain a total of 331776 integration
points, for which case the energy evaluation takes 1.5 s for one configuration.

Although some normal coding procedures for obtaining high-speed code have been observed,
the most obvious one being the storage of often used function values in matrices, our major
concern has been to write the code for clarity, not for speed.

8 Applications

We now apply the above formalism to four representative physical situations of current
interest. We first consider subbarrier fusion, which we follow by a study of a reaction used in
an attempt to synthesize superheavy elements. We then consider α emission from deformed
nuclei and finally the potential energy for a system where both the target and projectile are well
deformed.

8.1 Subbarrier fusion

As the first example of a calculated potential-energy surface we display in fig. 1 the inter-
action energy in the 184W+16O reaction. The 184W target is shown in the center as a dark
shaded area. The shape of 184W in its ground state is taken from the calculation of ref. 15). The
calculated interaction energy is given as a function of the location of the center of 16O. Since
the energy can only be calculated to the point of touching of the two ions, there will be an
area outside the surface of 184W for which the energy is undefined, at least for the separated-
system configuration which we consider here. This area is shaded in light gray. To show the
shape and relative sizes of both target and projectile without obscuring the potential-energy
surface we show the projectile as a magenta-colored shape inside the target. Of course, such an
overlapping configuration is not considered in our calculations here.

Because the 184W target is not spherical, the calculated potential energy for 184W+16O is
not nearly spherically symmetric, in particular near the top of the Coulomb barrier. Instead, the
highest region of the Coulomb barrier resembles a mountain ridge with valleys and peaks. The
highest peaks, at 75 MeV, are located, as should be expected, in directions where the closest
approach to the center occurs, in this case along the ρ axis. Conversely, the lowest saddle points
on the ridge, at 69 MeV, at about z = 10 fm and ρ = 6 fm, for example, occur in the directions
of the most distant closest approach. For the nuclear shape investigated here this corresponds
to directions at angles of approximately 45◦ with respect to the vertical. The barrier heights
calculated here agree very well with the values obtained in ref. 23) with a different interaction
potential. With that potential the maximum Coulomb barrier was about 74 MeV and the
minimum was about 67 MeV.

We note that the energy difference between the highest and lowest points on the ridge is
6 MeV. Consequently, one must conclude that Coulomb-barrier calculations based on simple
spherical models of target and projectile are only correct to within about this magnitude. Or,
more precisely, a one-dimensional Coulomb barrier calculation is in many realistic reactions a



P. Möller and A. Iwamoto/Macroscopic potential-energy surfaces. . . 16

Table 1: Comparison between ground-state deformations determined from fusion cross-section
and Coulomb-excitation experiments and calculated deformation parameters.

Nucleus 154Sm 186W

Deformation β2 β4 β2 β4
Fusion 0.30 0.05 0.30 −0.02
Coulomb Excitation 0.30 0.11 0.24 −0.09
Mass Calculation 0.27 0.11 0.23 −0.11

considerable approximation both because its energy cannot be well defined, and because the
“barrier” is in reality a multi-dimensional surface.

Nuclei in the beginning of the rare-earth region have a positive hexadecapole moment, in
contrast to nuclei like 184W at the end of the rare-earth region, where negative hexadecapole
moments are the norm 15). In fig. 2 we show a potential-energy surface for a heavy-ion collision
where the target has a large positive hexadecapole deformation. In this case the maxima and
minima on the ridge around the target are located along the ρ and z axes with energies of about
63 MeV and 57 MeV respectively. Also these values agree well with an earlier calculation 24).

In several papers 23−26) the sign and magnitude of β4 for rare-earth nuclei is discussed,
in particular the degree of fusion enhancement for positive and negative β4. In ref. 24) it is
pointed out that quite different results are obtained for the values of β2 and β4 in analysis of
Coulomb excitation data and fusion cross-section data. For 184W we find that a large, positive
value of β4 yields a lower fusion barrier. We obtain barrier heights of 73 MeV and 67 MeV in
the equatorial and polar regions, respectively. This lower barrier can be expected to yield a
larger enhancement to the fusion cross section, relative to the value β4 = 0 than the negative
β4 = −0.095 corresponding to the shape investigated in fig. 1.

We compare for two nuclei in the beginning and at the end of the rare-earth region the
deformations deduced from fusion cross-section and Coulomb excitation experiments, as sum-
marized in ref. 26), to deformations obtained in a nuclear mass calculation 15). The calculations
agree very well with results from Coulomb excitation experiments. However, it is pointed out in
ref. 26) that a more elaborate analysis of the fusion data, which takes into account couplings to
vibrational states, will yield deformations in better agreement with Coulomb excitation data.

8.2 Superheavy elements

In studies of heavy-ion reactions leading to compound heavy and superheavy nuclei it is
of interest to consider if particular relative orientations of target and projectile may enhance
the cross section for complete fusion. One reaction that has been studied experimentally 27) is
248Cm+48Ca. In fig. 3 we display the potential-energy surface for this reaction. The 15 MeV
difference between the barrier in the equatorial and polar regions stands out clearly. At first
sight collisions in the polar regions may seem preferable since such reactions are possible at
energies leading to lower excitation energies of the compound system. However, this reaction
would also lead to the most elongated of all the possible initial configurations. A collision in
the equatorial region would have to take place at a 15 MeV higher energy, but would represent
a more compact initial touching configuration. Thus, the amount of extra push required to
bring the system to a sufficiently compact shape for complete fusion, that is to inside the fission
saddle point, may be so much less than in the polar regions that it more than compensates for
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the higher Coulomb barrier in the equatorial region.

8.3 Light-particle emission

It has been a longstanding problem that the observed barriers for charged-particle emission
are lowered from their observed absorption barriers 28). A simple explanation of this difference
is that the parent nuclei are more deformed than the ground states of their daughter nuclei.
This deformation effect was observed in the energy spectra and α-emission angular distributions
following heavy-ion fusion reactions 29,30). However, the explanation of this effect is not yet
confirmed, partly because the results are obtained only after a complicated statistical-model
analysis 31). Another requirement, necessary to confirm this interpretation is a more realistic
calculation of the emission-barrier heights for charged particles from arbitrarily deformed nuclei.
If a compound nucleus deforms in the emission process, the lowest energy part of the emission
is greatly influenced 32), and we can expect to see the effect in some of the data. A previous
model calculation 32) was not precise enough in this respect. Thus, it is of interest to calculate
the distribution of barrier heights for charged-particle emission for various deformed nuclei using
our new model for the interaction barrier.

We calculate the two-dimensional potential-energy surface for α-particle emission as a typical
example. We choose 240Pu as a compound nucleus because the change of the barrier height
caused by deformation is larger for heavier compound nuclei than for lighter systems. In figs. 4–
8 we show the two-dimensional Coulomb barrier for shapes corresponding to a hypothetical
spherical nucleus, to the ground state (ǫ2 = 0.20, ǫ4 = −0.067), to the first saddle (ǫ2 = 0.40,
ǫ4 = 0.04), to the second minimum (ǫ2 = 0.56, ǫ4 = 0.07), and to the second, asymmetric saddle
(ǫ2 = 0.85, ǫ4 = 0.12, ǫ3 = 0.16, ǫ5 = −0.064).

The barrier for the hypothetical spherical 236U plus an α particle in fig. 4 is spherically
symmetric, as it should be. The peak of barrier is located about 2 fm away from the touching
point and its height is between 23 and 24 MeV. However, since the ground state of the nucleus
236U is deformed fig. 4 does not represent the barrier for α absorption to 236U. When the nucleus
236U is highly excited, however, the shell effect is at least partially washed out, which may well
result in a spherical 236U. This figure corresponds to such situation, i.e., an α emission from
spherical compound nucleus, and thus it plays the role of a reference configuration for the next
four calculations.

The potential energy corresponding to the ground-state shape of 236U plus an α particle is
shown in fig. 5. Due to the combined effect of β2 and β4, we observe a well-developed deformation
in the figure. The potential-energy surface has changed relative to fig. 4 so that the barrier is
now higher for the equatorial region of the nucleus in the upper and lower part of the figure,
and lower in the polar regions. The 236U + α configuration is rotationally symmetric about the
z axis. Thus, the potential energy has the same rotational symmetry, which is also maintained
in figs. 6–8. The height of the tallest peak of the potential-energy surface is almost the same
as the height of the ridge in the potential energy corresponding to the hypothetical spherical
configuration shown in fig. 4. The low point on the ridge around the deformed 236U nucleus is
a saddle configuration which is about 2 MeV lower in height relative to the height of the ridge
for the spherical configuration in fig. 4. This difference is rather big and one can expect to see
the effect in the α absorption data.

Figure 6 shows the potential energy corresponding to the first saddle-point deformation.
The β2 deformation has increased relative to its ground-state value and the potential energy, in
consequence, deviates still further from spherical symmetry than does the potential correspond-
ing to the ground-state configuration in fig. 5. The potential energy becomes maximum in the
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equatorial region and is here about 1 MeV higher than the ridge for the spherical configuration.
On the other hand, the barrier saddle points in the polar regions are 3 MeV lower than the
highest regions of the potential-energy surface.

The potential energy corresponding to α emission from a fission-isomeric configuration is
shown in fig. 7. The β2 deformation has increased further, but the potential energy has not
changed much relative to the previous figure. The highest potential-energy region is qualitatively
the same. In the polar regions we notice a reduction of about 1 MeV of the saddle-point height
compared to fig. 6. The difference between the highest and the lowest barrier height is here
about 4 MeV, which should be detectable if α isomer absorption is observed.

Figure 8 shows the potential energy for the second-saddle-point configuration. In this case,
both the β2 and β4 deformations and the left-right asymmetric deformation β3 are important.
Consequently, the structure of the potential energy is quite complicated. The lowest part of the
ridge around the saddle point shape is located somewhat outside the left tip of the nucleus. The
height of this saddle region is about 17 MeV. The highest barrier near the middle, equatorial
region of the saddle-point shape is as high as 24 MeV so the difference between the highest and
lowest points on the barrier ridge around the nucleus is about 7 MeV. The saddle-point height
on the right part of the ridge around the saddle-point shape is about 19.5 MeV in height.

As we have seen in figs. 4–8, the potential-energy surfaces for α emission depend rather
sensitively on the deformation of the parent nucleus. When the compound nucleus is heavy,
the difference in energy between the highest and lowest point on the ridge around the daughter
nucleus is not at all negligible. Thus, it may be possible to find a definite effect of deformation
in the experimental data. This goal is not simple to achieve, because a complicated statistical
model analysis is required to interpret the experimental data. In addition, a model for the
emission rate from highly deformed nuclei, similar to a preliminary formulation investigated in
ref. 32) is required. Nevertheless, we expect that it will be possible in the near future, to obtain
more definite results related to this longstanding problem of charged-particle emission, because
coincidence experiments with fission fragments developed recently 33) will give us more detailed
information on the deformation of compound nucleus.

8.4 Deformed target and projectile

All potential-energy surfaces studied above involved one deformed nucleus and one spherical
nucleus. When the deformed nucleus is axially symmetric a two-dimensional potential-energy
surface defines the potential completely. If axial symmetry is broken the problem becomes
three-dimensional.

When both target and projectile are deformed the potential becomes considerably more
complex. For axially symmetric nuclei the problems becomes four-dimensional; when axial
symmetry is broken it is six-dimensional.

We illustrate this complexity by presenting four representative potential-energy surfaces
for 24Mg+24Mg. Since the 24Mg nucleus is strongly deformed, with a calculated deformation
ǫ2 = 0.333 15), four degrees of freedom are required to completely specify the potential for this
system. For reference we first show the potential energy of a hypothetical spherical configuration
in fig. 9. We also show in figs. 10–12 calculated potential-energy surfaces for colliding, deformed
24Mg nuclei for three representative relative orientations of the colliding nuclei. In fig. 10 the
relative orientations of the two nuclei are such that the z axes of the two systems are always at
right angles and not in the same plane, except for y = 0. In fig. 11 the axes are parallel and in
the same plane. Finally, in fig. 12 the z axes are again at right angles, but in contrast to the
configuration studied in fig. 10 the two symmetry axes are here always in the same plane.
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For this light system the energy along the ridge around the target nucleus only varies by
about 2 MeV. The variation in ridge height between figs. 9–12 is also only about two MeV.

It is of interest to note that certain points in figs. 10–12 represent equivalent configurations
and should therefore have the same energy. For example, in fig. 12 the z and x axes represent
equivalent configurations, and the energy is also identical along these two axes. The z axis in
fig. 10 is also equivalent to the z and x axes in fig. 12 and the energy along all three of these
axes is indeed identical.

Complex potentials of similar structure as the potential in figs. 10–12 can also be expected
in molecular collisions. In modelling of such collisions it can therefore be expected that a con-
sideration of the full, multidimensional problem is necessary to establish if molecular resonances
correspond to local minima in the potential, near the point of touching of the colliding molecules.

9 Summary

We have shown that deformation of target and projectile in heavy-ion collisions and of the
daughter nuclei after particle emission, such as α-emission, has a dramatic effect on the nature
of the Coulomb barrier.

The simple concept of a one-dimensional Coulomb barrier is clearly inadequate for many
applications. We saw, for example, that the Coulomb barrier for the reaction 48Ca +248 Cm was
15 MeV lower in the polar regions as compared to the barrier in the equatorial region. This
reaction was studied experimentally in an attempt to form compound systems in the region of
superheavy nuclei. The complex structure of the Coulomb barrier clearly influences the optimum
reaction energy for compound nucleus formation.

The enhancement of subbarrier fusion, which has been observed for lighter target-projectile
combinations, can be qualitatively understood by noting that for a deformed target the Coulomb
barrier is several MeV lower in some directions than the one-dimensional “Coulomb barrier”
obtained from considering purely spherical target and projectile nuclei. For spherical nuclei
subbarrier fusion may also be enhanced due to vibrational motion.

The model presented here allows the calculation of the potential energy for completely general
configurations of two separated nuclei. It can also be generalized to alternative parameterizations
in a straightforward manner.

10 Appendix

10.1 Legendre polynomials and spherical harmonics

The Legendre polynomials
Pl, l = 0, 1, 2, . . . ,∞ (57)

are defined by

Pl(u) =
1

2ll!

dl

dul
(u2 − 1)l (58)

The associated Legendre functions

Pm
l , l = 0, 1, 2, . . . ,∞; m = 0, 1, 2, . . . , l (59)

are defined by

Pm
l (u) =

(1 − u2)m/2

2ll!

dl+m

dul+m
(u2 − 1)l (60)
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The first six Legendre polynomials are

P0(u) = 1

P1(u) = u

P2(u) =
1

2
(3u2 − 1)

P3(u) =
1

2
(5u3 − 3u)

P4(u) =
1

8
(35u4 − 30u2 + 3)

P5(u) =
1

8
(63u5 − 70u3 + 15u)

P6(u) =
1

16
(231u6 − 315u4 + 105u2 − 5) (61)

The spherical harmonics may be determined from the following relations

Y m
l (θ, φ) = (−)m

[
(2l + 1)

4π

(l −m)!

(l + m)!

]1/2
Pm
l (cos θ)eimφ (62)

and
Y m
l

∗(θ, φ) = (−)mY −m
l (θ, φ) (63)

For the functions used here we obtain

Y 2
2 (θ, φ) =

√
15

32π
sin2 θe2iφ

Y −2
2 (θ, φ) =

√
315

32π
sin2 θe−2iφ

Y 4
4 (θ, φ) =

√
315

512π
sin4 θe4iφ

Y −4
4 (θ, φ) =

√
315

512π
sin4 θe−4iφ

Y 2
4 (θ, φ) =

√
45

128π
sin2 θ(7 cos2 θ − 1)e2iφ

Y −2
4 (θ, φ) =

√
45

128π
sin2 θ(7 cos2 θ − 1)e−2iφ (64)

It is the sums

SY22 = Y 2
2 (θ, φ) + Y −2

2 (θ, φ)

SY44 = Y 4
4 (θ, φ) + Y −4

4 (θ, φ)

SY42 = Y 2
4 (θ, φ) + Y −2

4 (θ, φ) (65)

that are required in the expression for the single-particle potential and in the corresponding
equation for the nuclear surface. We obtain

SY22 =

√
15

8π
sin2 θ cos 2φ =

√
15

8π
(1 − u2)v
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SY44 =

√
315

128π
sin4 θ cos 4φ =

√
15

128π
(1 − u2)2(2v2 − 1)

SY42 =

√
45

32π
sin2 θ(7 cos2 θ − 1) cos 2φ =

√
45

32π
(1 − u2)(7u2 − 1)v (66)

10.2 Partial derivatives

The partial derivatives of the Legendre polynomials Pl(u) are

dP1(u)

du
= 1 (67)

dP2(u)

du
= 3u (68)

dP3(u)

du
=

1

2
(15u2 − 3) (69)

dP4(u)

du
=

1

2
(35u3 − 15u) (70)

dP5(u)

du
=

1

8
(315u4 − 210u2 + 15) (71)

dP6(u)

du
=

1

8
(693u5 − 630u3 + 105u) (72)

We also need the partial derivatives of V4(u, v) defined in eq. 35. Obviously

∂V4(u, v)

∂u
= a40

dP4(u)

du
+

√
4π

9

[
a42

∂SY42

∂u
+ a44

∂SY44

∂u

]

∂V4(u, v)

∂v
=

√
4π

9

[
a42

∂SY42

∂v
+ a44

∂SY44

∂v

]

∂SY44

∂u
= −

√
315

128π
4u(1 − u2)(2v2 − 1)

∂SY42

∂u
= +

√
45

32π
(16u − 28u3)v

∂SY44

∂v
= +

√
315

128π
4(1 − u2)2v

∂SY42

∂v
= +

√
45

32π
(1 − u2)(7u2 − 1) (73)
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Figure captions

Fig. 1 Potential-energy surface for the reaction 184W+16O. The energy in the light-
gray area, outside the 184W nucleus in the center was not calculated, because
the points in this region correspond to points inside the touching configuration.
The magenta-colored shape inside the 184W nucleus has been drawn to show the
relative size of the projectile to the target. This overlapping configuration is not
considered in actual calculations. Note the ridge with passes and peaks around
the target nucleus. The minimum pass (saddle point) on the ridge is about 69
MeV and occurs at about z = 10 fm and ρ = 6 fm. The maximum Coulomb
barrier is about 75 MeV and occurs in the z = 0 plane.

Fig. 2 Potential-energy surface for the reaction 154Sm+16O. Here the minimum in the
Coulomb barrier is about 57 MeV and occurs at z = ±12 fm and ρ = 0. The
maximum is about 63 MeV and occurs in the z = 0 plane.

Fig. 3 Potential-energy surface for the reaction 248Cm+48Ca. The Coulomb barrier in
the equatorial region is about 15 MeV higher than in the polar regions. Which
region is the most favorable for complete fusion depends on the amount of extra
push required in the two regions, see discussion in text.

Fig. 4 Potential-energy surface for α emission from 240Pu with spherical shape. Since
both 240Pu and the daughter nucleus 236U are deformed, this calculation is shown
mainly to serve as a reference configuration that can be compared to realistic
calculations with deformation effects included.

Fig. 5 Potential-energy surface for α emission from the ground-state configuration of
240Pu. Here a small deviation from spherical symmetry has developed so that
the Coulomb barrier in the equatorial region is 2 MeV higher than in the polar
regions.

Fig. 6 Potential-energy surface for α emission from the first saddle point configuration
of 240Pu. The Coulomb barrier in the equatorial region is now about 3 MeV
higher than in the polar regions.

Fig. 7 Potential-energy surface for α emission from the fission-isomeric configuration of
240Pu. The difference between the Coulomb barrier in the equatorial and polar
regions is now 4 MeV.

Fig. 8 Potential-energy surface for α emission from the second, mass-asymmetric saddle
configuration of 240Pu. Because of the asymmetry there is a difference of about 2
MeV between Coulomb barriers in the two polar regions. In the equatorial region
the barrier is 7 MeV higher than the lower of the two polar-region barriers.

Fig. 9 Potential-energy surface for the reaction 24Mg+24Mg. Although these nuclei
are deformed in their ground states, we show the potential energy calculated
for spherical shapes, so that we can compare this configuration to the realistic,
deformed calculations in figs. 10–12.

Fig. 10 Potential-energy surface for the reaction 24Mg+24Mg for ground-state nuclear
shapes. The symmetry axes of the two nuclei are at right angles, that is the
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Eulerian angles (α, β, γ) are α = 0, β = 90◦, and γ = 0, cf. eqs. 10–12. The cut
of the multidimensional potential-energy surface that is plotted corresponds to
x = 0, that is the ρ axis in this case is the y axis.

Fig. 11 Potential-energy surface for the reaction 24Mg+24Mg for ground-state nuclear
shapes. The symmetry axes of the two nuclei are parallel and in the same plane,
that is the Eulerian angles (α, β, γ) are α = 0, β = 0, and γ = 0, cf. eqs. 10–12.

Fig. 12 Potential-energy surface for the reaction 24Mg+24Mg for ground-state nuclear
shapes. The symmetry axes of the two nuclei are at right angles and in the
same plane, that is the Eulerian angles (α, β, γ) are α = 0, β = 90◦, and γ = 0,
cf. eqs. 10–12. The cut of the multidimensional potential-energy surface that is
plotted corresponds to y = 0, that is the ρ axis in this case is the x axis.
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